Porsche 924 Automatic is a fixed-head coupe with 2 doors, 4 seats and rear wheel drive (RWD). It has been unveiled in 1975. The dimensions of the automobile are as follows: width - 1655.00 mm, length - 4171.00 mm, height - 1259.00 mm. Moreover, this model's front and rear track are 1419.00 mm and 1372.00 mm respectively and its wheelbase is 2399.00 mm. 1079 kg is the curb weight. The naturally-aspirated engine of Porsche 924 Automatic has an engine displacement of 1984 cc, 4 cylinders with 2 valves per cylinder and single overhead camshaft (SOHC). It is fitted in the front of the vehicle and its alignment is longitudinal. Its cylinders are inline-arranged. The length of the piston stroke is 84.40 mm and the diameter of the cylinders is 86.50 mm . The pistons compression ratio is 9.30:1. The engine's maximum power is 92 kW / 125 ps at 5800 rpm and maximum torque is 165 Nm at 3500 rpm. The fuel system of this model is injection. This model has a 0.6336 m2 drag area, its drag coefficient is 0.36 and the frontal area is 1.7600 m2. The Porsche 924 Automatic has a 3-speed automatic transmission. The top gear ratio is 1.00:1. 3.46:1 is its final drive ratio. 61.80 l is the capacity of the fuel tank. The vehicle's steering assembly is rack and pinion type. The rear suspension includes coil springs, independent, semi-trailing arm, torsion bar and the front suspension - coil springs, independent, lower wishbone, MacPherson strut. The front brakes are fitted with disks. The rear brakes are fitted with drums.
Brand name The name of the company, which has manufactured this vehicle. | Porsche |
Series The series the vehicle's model belongs to. | 924 |
Model name The model name of the vehicle. | 924 Automatic |
Model code The code provided by the manufacturer, which marks this model. | - |
Model family A family this model belongs to. | - |
Produced since The year since the model has been in production. | 1975 |
Type of vehicle Information about the body type of this vehicle. | fixed-head coupe |
Drive system The type of the drive system used in the vehicle. | rear wheel drive (RWD) |
Number of seats The number of seats the vehicle has. | 4 |
Number of doors The number of doors the vehicle has. | 2 |
Length The distance from the rear-most point to the front-most point of the vehicle. | 4171.00 mm (millimeters) 164.2126 in (inches) 13.6844 ft (feet) |
Width The width of the vehicle. Devices like door handles, mirrors and lights usually are not included in the calculation of the width. The width is measured with doors and windows closed and the wheels in a straight-ahead position. | 1655.00 mm (millimeters) 65.1575 in (inches) 5.4298 ft (feet) |
Height The distance from the floor to the top-most part of the vehicle. | 1259.00 mm (millimeters) 49.5669 in (inches) 4.1306 ft (feet) |
Wheelbase The horizontal distance between the centers of the front and rear wheels. The distance between the front and rear axle. | 2399.00 mm (millimeters) 94.4488 in (inches) 7.8707 ft (feet) |
Front track The distance between the centers of the wheels on the front axle. | 1419.00 mm (millimeters) 55.8661 in (inches) 4.6555 ft (feet) |
Rear track The distance between the centers of the wheels on the rear axle. | 1372.00 mm (millimeters) 54.0157 in (inches) 4.5013 ft (feet) |
Ground clearance The distance from the lowest hanging point under the vehicle to the ground, measured with standard vehicle equipment, without cargo or passengers. | - |
Weight The weight of a vehicle with standard equipment and all necessary operating consumables, without passengers or cargo. | 1079 kg (kilograms) 2378.79 lb (pounds) |
Weight front/rear The percentage of weight distribution on the front and rear tyres. | - |
Engine manufacturer The name of the company, which has manufactured the enginge. | Audi |
Engine code The code of the engine. | - |
Engine displacement The total volume of the air/fuel mixture an engine can produce during one complete cycle. The engine displacement is the sum if the displacement of its cylinders, which includes the volume of the space between the upper and lower dead point of every cylinder. | ~ 2.0 l (liters) 1984 cc (cubic centimeters) |
Number of cylinders The total number of cylinders in the engine. A cylinder is the space, in which a piston moves between it's upper and lower dead point. | 4 |
Cylinder arrangement Information on how the cylinders in the engine are arranged. Some of the most common arrangements are: Inline, V and Boxer (opposite). | inline |
Valves per cylinder Most engines have two or more valves per cylinder to control the flow of gases and fluids at proper timings. Intake valves are used to control the flow of air and fuel into each cylinder, while the exhaust valves make sure exhaust gases leave the cylinder. | 2 |
Bore The diameter of the cylinder in the engine. Most internal combustion engines have bores in the 70 mm - 105 mm range. | 86.50 mm (millimeters) 3.4055 in (inches) 0.2838 ft (feet) |
Stroke The length of the piston stroke within the cylinders. The distance the piston travels back-and-forth between it's upper and lower dead point. | 84.40 mm (millimeters) 3.3228 in (inches) 0.2769 ft (feet) |
Compression ratio The ratio between the largest and the smallest volume of the combustion chamber when the piston is at the top of its stroke (smallest volume) and the bottom of its stroke (largest volume). | 9.30:1 |
BMEP Break mean effective pressure is the average pressure that acts on the piston. The higher the pressure is, the more optimized design has been achieved. BMEP takes into account engine's volume, rpm and power output. | 150.68 psi (pounds per square inch) 1038.90 kPa (kilopascals) 10.39 bar (bars) |
Aspiration The type of aspiration. Some engines are naturally aspirated, while others are turbo/supercharged. | naturally-aspirated |
Engine design The design of the engine in regards to the number and arrangement of camshaft(s), intake and exhaust valves, etc. | single overhead camshaft (SOHC) |
Sump type The lubricating oil system used to oil the engine's parts. Lubrication prevents friction and respectively - wearing out of the elements, which are in contact while the engine is working. There are two main types of sump systems - wet and dry. | - |
Main bearings The main bearings are the bearings on which the crankshaft rotates. The number of main bearings depends on the engine type. | 5 |
Coolant The type of engine coolant system used to remove the heat from the engine. | liquid |
Intercooler An air-to-air or air-to-liquid heat exchange device used between the turbo and the intake manifold to reduce the temperature of the air, which increases its density. | no |
Engine location The location of the engine in the vehicle - whether it is front mounted, middle mounted or rear mounted. | front |
Engine alignment The alignment/orientation of the engine in the vehicle. A transverse engine is mounted so that the engine's crankshaft axis is perpendicular to the long axis of the vehicle. Longitudinal engine is mounted so that the crankshaft is paralel to the long axis of the vehicle. | longitudinal |
Fuel system The fuel system type used to store and supply fuel in the cylinder chamber. | injection |
Catalytic converter It reduces the toxicity of the emissions from the engine by causing a chemical reaction that transforms harmful gases into less harmful substances. | no |
Max power The maximum amount of power the engine can produce. | 92 kW (kilowatts) 125 ps (Pferdestärke) 124 hp (horse power) |
Max power at rpm The number of revolutions per minute at which the engine produces its maximum power. | 5800 rpm (revolutions per minute) |
Max torque The maximum torque the engine can produce. Torque is the turning effect, produced when force is applied to rotate an object around an axis, fulcrum, or pivot. | 165 Nm (newton meters) 121 ft-lb (foot-pounds) 16 kgm (kilogram meters) |
Max torque at rpm The number of revolutions per minute at which the engine produces its maximum torque. | 3500 rpm (revolutions per minute) |
Max speed The maximum speed the vehicle can achieve. | 194 km/h (kilometers per hour) 120.55 mph (miles per hour) |
Max rpm The maximum number of revolutions per minute of the crankshaft the engine is allowed to run. | - |
0 - 60 mph The time in seconds in which the vehicle accelerates from 0 to 60 miles per hour. | - |
0 - 100 km/h The time in seconds the vehicle needs to accelerate from 0 to 100 kilometers per hour. | - |
Quarter mile time The time in seconds the vehicle needs to do a quarter mile. | - |
Drag coefficient (Cd/Cx/Cw) Quantifies the resistance (drag) of the vehicle, while moving through the air. Contemporary automobiles achieve a drag coefficient from 0.30 to 0.35. Cd is also known as Cx in France and Cw in Germany | 0.36 |
Frontal area (A) The total surface area of the front of a vehicle that is exposed to the air flow. | 1.7600 m2 (square meters) 2728.0055 in2 (square inches) 18.9445 ft2 (square feet) |
Drag area (CdA) Expresses the aerodynamic efficiency of the vehicle and is measured by multiplying the drag coefficient (Cd) and the frontal surface area (A). The lower the drag area is the more efficient aerodynamically the vehicle is. | 0.6336 m2 (square meters) 982.0820 in2 (square inches) 6.8200 ft2 (square feet) |
Fuel capacity The maximum amount of fuel that the vehicle's fuel tank can hold. | 61.80 l (liters) 16.33 US gal (US gallons) 13.59 UK gal (UK gallons) |
Fuel consumption - urban The amount of fuel used by the vehicle to cover the distance of 100 kilometers where the speed varies from 0 to 50 km/h. | - |
Fuel consumption - extra urban The amount of fuel used by the vehicle to cover the distance of 100 kilometers where the speed varies from 80 to 120 km/h. | - |
Fuel consumption - combined The average amount of fuel consumed by the vehicle per unit distance in urban and extra-urban traffic. | - |
CO2 emissions Information about the carbone dioxide emitted by the vehicle. The average CO2 emissions rating is 167 grams of carbon dioxide per kilometer driven. | - |
Suspension front Information about the front suspension mechanism used in the vehicle. The mechanical system that connects the wheels and axles to the chassis of the vehicle. | coil springs independent lower wishbone MacPherson strut |
Suspension rear Information about the rear suspension mechanism used in the vehicle. The suspension contributes to the vehicle's handling and braking, isolates the passengers from the road noise and vibrations. | coil springs independent semi-trailing arm torsion bar |
Transmission A transmission a.k.a gearbox adapts the output of the engine to the drive wheels. The transmission can increase the torque while reducing the speed of the crankshaft or do the opposite - reduce the torque while increasing the speed of the crankshaft. | automatic |
Number of gears The number of gears in the transmision of the vehicle. | 3 |
Top gear ratio The gear ratio of the top gear. The gears ratio expresses the ratio between the number of teeth of the larger gear and the pinion, or simply put the ratio between the gears radiuses/diameters. E.g. the ratio of a gear with 24 teeth and a pinion with 13 teeth is 1.84:1. | 1.00:1 |
Final drvie ratio The final drive ratio expresses the ratio between the number of rotations of the drive shaft for one rotation of a wheel or the ratio between the number of revolutions of the pinion for one revolution of the drive axle. | 3.46:1 |
Brakes front The brake system used on the front wheels. In general, the brake system transmits the force from the brake pedal to the brake pads, which allows the vehicle to slow down and stop. | disks |
Brakes rear Information about the brake system used on the rear wheels. | drums |
Front brake diameter The diameter of the front brake disks. The brake disk is located between the brake pads, which when forced against both sides of the disk slow and stop the rotation of the wheel. | - |
Rear brake diameter The diameter of the rear brake disks. | - |
Wheels front The size/type of the front wheels. For example in "7.5J x 16", the first number represents the width in inches, the second one represents the height in inches. The letter J represents the wheel contour. | - |
Wheels rear The size/type of the rear wheels used in the vehicle. | - |
Tyres front The size/type of the front tyres. For example in the tyre code "225/55 R 16" the first number stands for width in mm, the second number stands for aspect ratio of height to width in %, R stands for construction type (radial) and 16 stands for wheel diameter in inches. | - |
Tyres rear The size/type of the rear tyres used in the vehicle. | - |
Turning circle The smallest possible diameter of the circle described by the outside wheels when the vehicle is turning on full lock. | - |
Steering Information about the design of the mechanism used in the vehicle which allows it to follow the desired course. The steering mechanism aims to ensure that the wheels are pointing in the desired directions. | rack and pinion |
Turns lock to lock The number of complete rotations a steering wheel makes when turned from one extreme lock position to the other. For example, from extreme left to extreme right. | - |
carinf.com is not responsible for the accuracy of the information it publishes - technical data, characteristics, specifications, indicators, etc. All manufacturers' logos, marques, and all other trademarks are the property of their respective owners.
cookie policy
© carinf.com