Audi Coupe 2.0 GT Automatic is a front wheel drive (FWD), 2-door fixed-head coupe that has 4 seats. It is unveiled in 1985. The vehicle is 1683.00 mm wide, 4422.00 mm long and 1349.00 mm high. Furthermore, the wheelbase is 2537.00 mm, the rear and front track are 1420.00 mm and 1394.00 mm respectively. This vehicle's ground clearance is 120.00 mm. The naturally-aspirated engine of Audi Coupe 2.0 GT Automatic has 5 cylinders with 2 valves per cylinder and single overhead camshaft (SOHC), single overhead camshaft (SOHC) and engine displacement of 1994 cc. It has a longitudinal alignment and is situated in the front of the vehicle. The cylinders are inline-arranged. The diameter of the cylinders is 81.00 mm and the length of the piston stroke is 77.40 mm. The pistons compression ratio is 10.00:1. The maximum torque produced by the engine is 164 Nm at 3200 rpm and its maximum torque is 84 kW / 115 ps at 5400 rpm. This model has an injection fuel system. The vehicle accelerates for 11.70 s from 0 to 100 km/h. The transmission of Audi Coupe 2.0 GT Automatic is automatic. The urban fuel consumption of this automobile is 7.36 l/100 km, the extra urban fuel consumption is 9.16 l/100 km and the combined is 11.63 l/100 km. 68.00 l is the capacity of the fuel tank. The vehicle has a rack and pinion steering box. The size/type of tyres in the front is 185/60 HR 14. The size/type of the rear tyres is 185/60 HR 14. The front brakes are equipped with ventilated disks. The rear brakes are set up with drums, servo assistance.
Brand name
The name of the company, which has manufactured this vehicle.
The series the vehicle's model belongs to.
Model name
The model name of the vehicle.
Coupe 2.0 GT Automatic
Model code
The code provided by the manufacturer, which marks this model.
Model family
A family this model belongs to.
Produced since
The year since the model has been in production.
Type of vehicle
Information about the body type of this vehicle.
fixed-head coupe
Drive system
The type of the drive system used in the vehicle.
front wheel drive (FWD)
Number of seats
The number of seats the vehicle has.
Number of doors
The number of doors the vehicle has.
The distance from the rear-most point to the front-most point of the vehicle.
4422.00 mm (millimeters)

174.0945 in (inches)

14.5079 ft (feet)
The width of the vehicle. Devices like door handles, mirrors and lights usually are not included in the calculation of the width. The width is measured with doors and windows closed and the wheels in a straight-ahead position.
1683.00 mm (millimeters)

66.2598 in (inches)

5.5217 ft (feet)
The distance from the floor to the top-most part of the vehicle.
1349.00 mm (millimeters)

53.1102 in (inches)

4.4259 ft (feet)
The horizontal distance between the centers of the front and rear wheels. The distance between the front and rear axle.
2537.00 mm (millimeters)

99.8819 in (inches)

8.3235 ft (feet)
Front track
The distance between the centers of the wheels on the front axle.
1394.00 mm (millimeters)

54.8819 in (inches)

4.5735 ft (feet)
Rear track
The distance between the centers of the wheels on the rear axle.
1420.00 mm (millimeters)

55.9055 in (inches)

4.6588 ft (feet)
Ground clearance
The distance from the lowest hanging point under the vehicle to the ground, measured with standard vehicle equipment, without cargo or passengers.
120.00 mm (millimeters)

4.7244 in (inches)

0.3937 ft (feet)
The weight of a vehicle with standard equipment and all necessary operating consumables, without passengers or cargo.
Weight front/rear
The percentage of weight distribution on the front and rear tyres.
Engine manufacturer
The name of the company, which has manufactured the enginge.
Engine code
The code of the engine.
Engine displacement
The total volume of the air/fuel mixture an engine can produce during one complete cycle. The engine displacement is the sum if the displacement of its cylinders, which includes the volume of the space between the upper and lower dead point of every cylinder.
~ 2.0 l (liters)

1994 cc (cubic centimeters)
Number of cylinders
The total number of cylinders in the engine. A cylinder is the space, in which a piston moves between it's upper and lower dead point.
Cylinder arrangement
Information on how the cylinders in the engine are arranged. Some of the most common arrangements are: Inline, V and Boxer (opposite).
Valves per cylinder
Most engines have two or more valves per cylinder to control the flow of gases and fluids at proper timings. Intake valves are used to control the flow of air and fuel into each cylinder, while the exhaust valves make sure exhaust gases leave the cylinder.
The diameter of the cylinder in the engine. Most internal combustion engines have bores in the 70 mm - 105 mm range.
81.00 mm (millimeters)

3.1890 in (inches)

0.2657 ft (feet)
The length of the piston stroke within the cylinders. The distance the piston travels back-and-forth between it's upper and lower dead point.
77.40 mm (millimeters)

3.0472 in (inches)

0.2539 ft (feet)
Compression ratio
The ratio between the largest and the smallest volume of the combustion chamber when the piston is at the top of its stroke (smallest volume) and the bottom of its stroke (largest volume).
Break mean effective pressure is the average pressure that acts on the piston. The higher the pressure is, the more optimized design has been achieved. BMEP takes into account engine's volume, rpm and power output.
150.79 psi (pounds per square inch)

1039.66 kPa (kilopascals)

10.40 bar (bars)
The type of aspiration. Some engines are naturally aspirated, while others are turbo/supercharged.
Engine design
The design of the engine in regards to the number and arrangement of camshaft(s), intake and exhaust valves, etc.
single overhead camshaft (SOHC)
Sump type
The lubricating oil system used to oil the engine's parts. Lubrication prevents friction and respectively - wearing out of the elements, which are in contact while the engine is working. There are two main types of sump systems - wet and dry.
Main bearings
The main bearings are the bearings on which the crankshaft rotates. The number of main bearings depends on the engine type.
The type of engine coolant system used to remove the heat from the engine.
An air-to-air or air-to-liquid heat exchange device used between the turbo and the intake manifold to reduce the temperature of the air, which increases its density.
Engine location
The location of the engine in the vehicle - whether it is front mounted, middle mounted or rear mounted.
Engine alignment
The alignment/orientation of the engine in the vehicle. A transverse engine is mounted so that the engine's crankshaft axis is perpendicular to the long axis of the vehicle. Longitudinal engine is mounted so that the crankshaft is paralel to the long axis of the vehicle.
Fuel system
The fuel system type used to store and supply fuel in the cylinder chamber.
Catalytic converter
It reduces the toxicity of the emissions from the engine by causing a chemical reaction that transforms harmful gases into less harmful substances.
Max power
The maximum amount of power the engine can produce.
84 kW (kilowatts)

115 ps (Pferdestärke)

113 hp (horse power)
Max power at rpm
The number of revolutions per minute at which the engine produces its maximum power.
5400 rpm (revolutions per minute)
Max torque
The maximum torque the engine can produce. Torque is the turning effect, produced when force is applied to rotate an object around an axis, fulcrum, or pivot.
164 Nm (newton meters)

121 ft-lb (foot-pounds)

16 kgm (kilogram meters)
Max torque at rpm
The number of revolutions per minute at which the engine produces its maximum torque.
3200 rpm (revolutions per minute)
Max speed
The maximum speed the vehicle can achieve.
182 km/h (kilometers per hour)

113.09 mph (miles per hour)
Max rpm
The maximum number of revolutions per minute of the crankshaft the engine is allowed to run.
0 - 60 mph
The time in seconds in which the vehicle accelerates from 0 to 60 miles per hour.
0 - 100 km/h
The time in seconds the vehicle needs to accelerate from 0 to 100 kilometers per hour.
11.70 s (seconds)
Quarter mile time
The time in seconds the vehicle needs to do a quarter mile.
Drag coefficient (Cd/Cx/Cw)
Quantifies the resistance (drag) of the vehicle, while moving through the air. Contemporary automobiles achieve a drag coefficient from 0.30 to 0.35. Cd is also known as Cx in France and Cw in Germany
Frontal area (A)
The total surface area of the front of a vehicle that is exposed to the air flow.
Drag area (CdA)
Expresses the aerodynamic efficiency of the vehicle and is measured by multiplying the drag coefficient (Cd) and the frontal surface area (A). The lower the drag area is the more efficient aerodynamically the vehicle is.
Fuel capacity
The maximum amount of fuel that the vehicle's fuel tank can hold.
68.00 l (liters)

17.96 US gal (US gallons)

14.96 UK gal (UK gallons)
Fuel consumption - urban
The amount of fuel used by the vehicle to cover the distance of 100 kilometers where the speed varies from 0 to 50 km/h.
7.36 l (liters)

1.94 US gal (US gallons)

1.62 UK gal (UK gallons)
Fuel consumption - extra urban
The amount of fuel used by the vehicle to cover the distance of 100 kilometers where the speed varies from 80 to 120 km/h.
9.16 l (liters)

2.42 US gal (US gallons)

2.01 UK gal (UK gallons)
Fuel consumption - combined
The average amount of fuel consumed by the vehicle per unit distance in urban and extra-urban traffic.
11.63 l (liters)

3.07 US gal (US gallons)

2.56 UK gal (UK gallons)
CO2 emissions
Information about the carbone dioxide emitted by the vehicle. The average CO2 emissions rating is 167 grams of carbon dioxide per kilometer driven.
Suspension front
Information about the front suspension mechanism used in the vehicle. The mechanical system that connects the wheels and axles to the chassis of the vehicle.
Suspension rear
Information about the rear suspension mechanism used in the vehicle. The suspension contributes to the vehicle's handling and braking, isolates the passengers from the road noise and vibrations.
A transmission a.k.a gearbox adapts the output of the engine to the drive wheels. The transmission can increase the torque while reducing the speed of the crankshaft or do the opposite - reduce the torque while increasing the speed of the crankshaft.
Number of gears
The number of gears in the transmision of the vehicle.
Top gear ratio
The gear ratio of the top gear. The gears ratio expresses the ratio between the number of teeth of the larger gear and the pinion, or simply put the ratio between the gears radiuses/diameters. E.g. the ratio of a gear with 24 teeth and a pinion with 13 teeth is 1.84:1.
Final drvie ratio
The final drive ratio expresses the ratio between the number of rotations of the drive shaft for one rotation of a wheel or the ratio between the number of revolutions of the pinion for one revolution of the drive axle.
Brakes front
The brake system used on the front wheels. In general, the brake system transmits the force from the brake pedal to the brake pads, which allows the vehicle to slow down and stop.
ventilated disks
Brakes rear
Information about the brake system used on the rear wheels.

servo assistance
Front brake diameter
The diameter of the front brake disks. The brake disk is located between the brake pads, which when forced against both sides of the disk slow and stop the rotation of the wheel.
Rear brake diameter
The diameter of the rear brake disks.
Wheels front
The size/type of the front wheels. For example in "7.5J x 16", the first number represents the width in inches, the second one represents the height in inches. The letter J represents the wheel contour.
Wheels rear
The size/type of the rear wheels used in the vehicle.
Tyres front
The size/type of the front tyres. For example in the tyre code "225/55 R 16" the first number stands for width in mm, the second number stands for aspect ratio of height to width in %, R stands for construction type (radial) and 16 stands for wheel diameter in inches.
185/60 HR 14
Tyres rear
The size/type of the rear tyres used in the vehicle.
185/60 HR 14
Turning circle
The smallest possible diameter of the circle described by the outside wheels when the vehicle is turning on full lock.
Information about the design of the mechanism used in the vehicle which allows it to follow the desired course. The steering mechanism aims to ensure that the wheels are pointing in the desired directions.
rack and pinion
Turns lock to lock
The number of complete rotations a steering wheel makes when turned from one extreme lock position to the other. For example, from extreme left to extreme right.
- is not responsible for the accuracy of the information it publishes - technical data, characteristics, specifications, indicators, etc. All manufacturers' logos, marques, and all other trademarks are the property of their respective owners.
cookie policy ©